

Outline:

I. WINKLER: analyses of the ${\rm O_2}$ measurement quality in a Oxygen Minimum Zone (OMZ): detection limit, reproducibility

II. O_2 -CTD ADJUSTMENT WITH WINKLER: the OMZs issues

III. ULTRA-LOW [O2] ADJUSTMENT: O2-CTD using 0-STOX reference

AMOP: PROJECT DEDICATED TO LOW O2

PERU

157 profiles with a sampling focussed on the O₂ parameter, >5000 measurements:

- 5 platforms with O₂: CTD (2), FR-CTD (1), drifting line (9), Argo-floats (3), mooring (5), on board from Niskin (3);

- 4 measurement techniques:
Winkler (potentiometry, photometry), electrochemistry (SBE43, SE63, STOX), optodes.
- Focus on the OMZ (Core & Oxicine).

O₂ Winkler (µmol/L)
0 200 400 600

5 1000
200 2000
2000
2000

Pacific

Chemical method of reference with indirect standard $\{O_2$ fixation, and titration, blanks & titration of the NaS $_2O_3$ (Winkler, 1888)). Use of automatic titrator.

> 1800 measurements with systematical triplicates

I. WINKLER: analyses of the O_2 measurement quality in an OMZ

 Goal: to analyze the Winkler method quality for the specific O₂ distribution in an OMZ

1) Limit of Detection (LOD)
2) Reproducibility

Surface (supersaturation)
OXYCLINE (extreme gradient)
CORE (O₂-climite of detection)
LOWER O₂ GRADIENT (LOG)

OMZ

1.1) Limit Of Detection (LOD)

AM P

WHICH CONTAMINATION AT THE NISKIN SAMPLING?

➤ Experiments with 15 replicates 1) WINKLER SAMPLING & FIXATION

2) REFERENCE FOR LOW [O₂]

STOX (Switchable Trace Oxygen sensor with nano-/pico-molar LOD) AS "0"

Revsbech NP, Larsen LH, Gundersen J, Dalsgaard T, Ulloa O, Thamdrup B. Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnol Oceanogr Methods. 2009; 7: 371–381.

II. O2-CTD ADJUSTEMENT WITH WINKLER

Collaborations with GLAZEO from 2015 to 2018 in 2 steps:

III. ULTRA-LOW [O,] ADJUSMENT: O,-CTD using 0-STOX reference

After the adjustment with the Winkler reference (out of the core), USE of a REFERENCE for the ULTRA-LOW [O2] in the OMZ core

(e.g. STOX/LUMOS with nano-/pico-molar detection limit)

TAKE HOME MESSAGE:

1) WINKLER MEASUREMENT

a) In the OMZ core, not relevant as a reference

Limit of detection > 4 µM due to:

- O_2 release by the polymers in the Niskin bottle: 0.3<1 μ M;
- Winkler sampling and fixation process: 2<7 μM

b) Reproducibility affected in the upper highest OMZ O2 gradient (oxycline-core interface):

Lower core & LOG: ~80% better reproducibility compared to

the lower oxycline & upper core

TAKE HOME MESSAGE:

1) WINKLER MEASUREMENT

a) In the OMZ core, not relevant as a reference

b) Reproductibility affected in the upper highest OMZ O2 gradient (oxycline-core interface):

Lower oxycline & upper core: ~80% higher reproducibility compared to

the lower core and LOG

2) ADJUSTEMENT OF O2-CTD WITH WINKLER

- a) Presence of very localized outliers, at the:
 - surface → strong natural temporal variability
 - oxycline → negative concentrations
- b) Focus on the upcasts, & on the calibration parameters for downcasts (without Tau20 → smoothed profiles)

TAKE HOME MESSAGE:

1) WINKLER MEASUREMENT

a) In the OMZ core, not relevant as a reference

b) Reproductibility affected in the upper highest OMZ O2 gradient (oxycline-core interface):

Lower oxycline & upper core: ~80% higher reproducibility compared to the lower core and LOG

2) ADJUSTEMENT OF O2-CTD WITH WINKLER

- a) Presence of very localized outliers, at the:
 - surface -> strong natural temporal variability
 - oxycline → negative concentrations
- b) Focus on the upcasts, & on the adjusments parameters for downcasts (without Tau20 → smoothed profiles)

3) ADJUSTMENT OF O2-CTD FOR LOW [O2]

- a) Requirement of a «anoxic» reference: STOX/LUMOS, historical
- b) Limit of detection x~50 better than with Winkler: ~60 nmol/kg

- 1) Proposition to write a Paper of Recommendations according to the protocols of O2 sampling, measurements and adjustment in O2-perturbated regions (e.g. OMZs) in order to:
 - share the results of those methodological studies;
 - allow inter-comparisons between data, assessing and increasing the quality of the global datasets
 - improve key-observations in terms of low O2 concentrations and variability;

NEXT:

- 2) Importance to have connections between our communities and the international initiatives:

 - INTURES:

 GO_NE (Global Ocean Oxygen Network), IOC-Unesco WG;
 IOCCP (International Ocean Carbon Coordination Project), SCOR/IOC-Unesco;
 VOICE project (Variability in the Oxycline and its Impact on the Ecosystems), outcome of IMSOO (Implementation of Multi-disciplinary Sustained Oxean Observations) (GOOS (Global Oxean Observing System), IOC-Une WIMO (World Meteronlogical Organization), UN Environment, ISC (International Source Careal)

http://www.ioccp.org/oxygen

